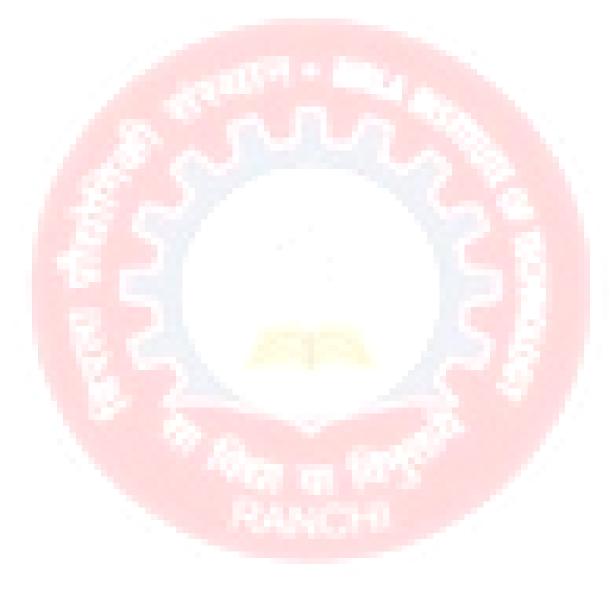
BIRLA INSTITUTE OF TECHNOLOGY

NEP-2020 CURRICULUM BOOK (Effective from Academic Session: Monsoon 2024)

Bachelor of Technology


DEPARTMENT OF

INSTITUTE N	IISSION			

DEPARTMENT VISION		

DEPARTMENT MISSION

•

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Basic Knowledge

Students will learn the basic concepts of chemistry like bonding, reactions, spectroscopy, and electrochemistry that are needed in science and engineering.

2. **Problem-Solving Skills**

Students will be able to handle practical chemistry challenges, understand how reactions occur in real situations, and explain the results clearly.

3. Practical Application

Students will use their chemistry knowledge in industry, technology, and real-life situations, especially for sustainable development.

4. Lifelong Learning

Students will develop curiosity to keep learning, do research, and stay updated with new scientific and technological changes.

5. Professional Values

Students will follow safety, ethics, and environmental responsibility while working alone or in teams in academic, industrial, or research settings.

PROGRAMME OUTCOMES (POs)

PO1: Chemistry Knowledge

Apply concepts of chemistry, mathematics, and allied sciences (bonding, stereochemistry, kinetics, spectroscopy, electrochemistry) to explain and solve problems in engineering and real-life applications.

PO2: Problem Analysis

Identify, formulate, and analyze chemical reactions, mechanisms, and equilibrium processes using scientific principles and laboratory results to draw valid conclusions.

PO3: Design/Development of Solutions

Design and optimize chemical processes, experimental procedures, and material applications considering safety, cost, health, and environmental aspects.

PO4: Conduct Investigations of Complex Problems

Plan and carry out laboratory experiments in kinetics, spectroscopy, and electrochemistry; collect and analyze data systematically to obtain meaningful scientific interpretations.

PO5: Modern Tool Usage

Use modern analytical instruments (UV-Vis, IR, NMR, potentiometry, conductometry) and computational tools effectively to solve chemical and engineering problems.

PO6: The Chemist and Society

Evaluate the impact of chemistry on health, safety, environment, and sustainability, while applying chemical knowledge responsibly to societal needs.

PO7: Ethics

Demonstrate ethical behavior in handling chemicals, reporting data honestly, and following environmental and safety regulations in laboratory and industrial practices.

PO8: Individual and Team Work

Work effectively as an individual researcher as well as part of a laboratory or multidisciplinary team to solve chemistry-related problems.

PO9: Communication

Communicate effectively on chemical topics by writing lab reports, preparing project documentation, making presentations, and explaining scientific concepts clearly.

PO10: Project Management and Finance

Apply knowledge of project management and resource handling in laboratory or industrial settings, understanding cost, sustainability, and safety aspects of chemical processes.

PO11: Life-long Learning

Recognize the importance of continuous learning in chemistry and related sciences, adapting to new research, tools, and technologies throughout professional life.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

1: Fundamental Knowledge in Chemistry

Students will be able to understand and apply theoretical concepts of bonding, stereochemistry, kinetics, spectroscopy, and electrochemistry to explain scientific principles and solve academic problems.

2: Analytical and Problem-Solving Skills

Students will develop the ability to analyze chemical structures, reaction mechanisms, and thermodynamic/phase equilibrium concepts to provide logical solutions in chemistry and related fields.

3: Chemistry for Society and Sustainability

Students will connect theoretical chemical knowledge with industrial, environmental, and societal contexts, promoting sustainable development and ethical responsibility.

Mapping of Pos and PSOs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	2	2	1	2
PO2	2	3	2	1	2
PO3	2	2	3	2	2
PO4	2	2	2	3	2
PO5	1	2	3	3	2
PO6	1	2	2	2	3
PO7	0	1	1	2	3
PO8	1	2	2	2	2
PO9	2	2	2	2	2
PO10	1	1	2	2	2

PO11	3	3	3	3	2
PSO1	3	2	3	2	2
PSO2	2	3	3	3	2
PSO3	2	2	3	3	3

Grading: No correlation -0, Low correlation -1, Moderate correlation -2, High Correlation -3

Program Course Structure

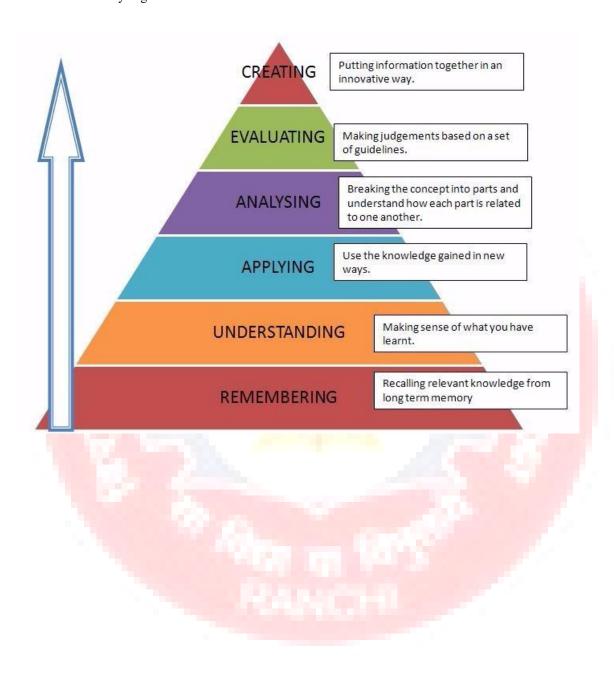
Birla Institute of Technology, Mesra, Ranchi

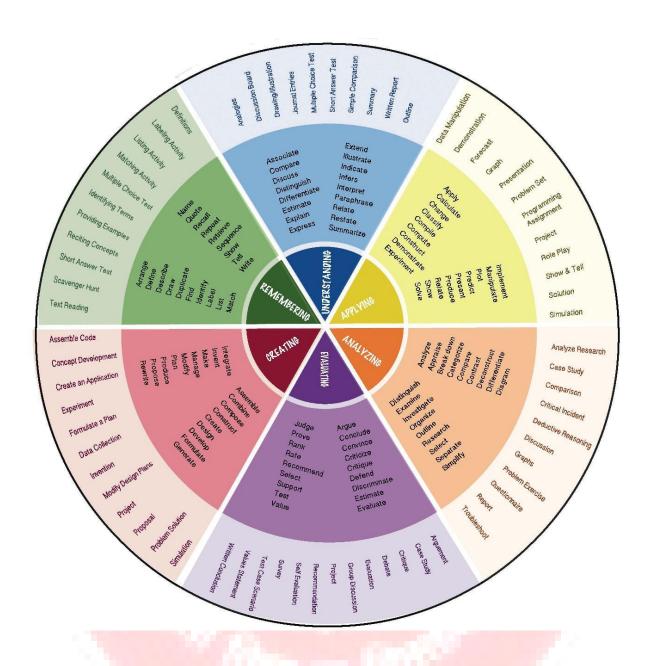
Course Structure for B.Tech. (Electronics and Communication Engineering) Based on NEP-2020, CBCS and OBE, Effective from 2024-2025

Sr. No.	Semester of Study (Recomm ended)	Cate gory of Cou rse	Course Code	Subjects		Delivery & ure; T-Tuto Practical		Total Credit s
					L (Period s/ Week	T (Period s/ Week)	P (Period s/ Week)	
				THEORY				
I.1		FS	MA24101	Mathematics - I	3	1	0	4
I.2	FIRST		CH24101	Chemistry	3	1	0	4
			EC24101	Basic Electronics	2	1	0	3
I.4		GE	ME24101	Basics of Mechanical Engineering	2	1	0	3
I.5		FS	CE24101	Environmental Sciences	2	0	0	2
				LABORATORIES	S			
I.6		FS	CH24102	Chemistry Lab	0	0	2	1
I.7		GE	EC24102	Basic Electronics Lab	0	0	2	1
I.8	1		ME24102	Engineering Graphics	0	0	4	2
I.9	1	_	PE24102	Workshop Practice	0	0	2	1
I.10		MC	MC24 101/ 102 /103/ 104/105	Choice of : NCC/NSS/ PT & Games/ Creative Arts (CA) /Entrepreneurship	0	0	2	1
	-1	ı	TOT	AL (Theory + Labs)			l .	22
				THEORY				
II.1]	FS	MA24103	Mathematics - II	3	1	0	4
II.2	SECOND		PH24101	Physics	3	1	0	4
			BE24101	Biological Sciences for Engineers	2	0	0	2
II.4		GE	CS24101	Programming for Problem Solving	3	1	0	4

II.5			EE24101	Basics of Electrical	2	1	0	3
				Engineering				
	1		T	LABORATORIES				
II.6		FS	PH24102	Physics Lab	0	0	2	1
II.7		GE	CS24102	Programming for problem Solving Lab.	0	0	2	1
II.8			EE24102	Electrical Engineering Lab.	0	0	2	1
I.9		HSS	HS24131	Communication Skill - I	0	0	3	1.5
I.10]	MC	MC24 106	Choice of : NCC/NSS/ PT	0	0	2	1
			/107/108/1 09/110	& Games/ Creative Arts (CA) /Entrepreneurship				
			TOT	AL (Theory + Labs)		l		22.5
				OTAL FOR FIRST YEAR				44.5
				Courses for Exit after 1st Year				
				e. Course Name	1	0	4	3
	Vocational C	Course I	I: Course Coo	de. Course Name	1	0	4	3
				THEORY				
III.1		PC	EC24201	Electronic Devices	3	1	0	4
III.2	THIRD		EC24203	Digital System Design	3	0	0	3
III.3			EC24205	Network Theory	3	1	0	4
III.4			EC24207	Signals and Systems	3	0	0	3
III.5			EC24209	Probability and Random Processes	3	0	0	3
III.6		HSS	MT24131	UHV-II: Understanding Harmony	3	0	0	3
			•	LABORATORIES				
III.7		PC	EC24202	Electronic Devices Lab	0	0	2	1
III.8		PC	EC24204	Digital System Design Lab	0	0	2	1
III.9		MC	MC24	Choice of: NCC/NSS/ PT	0	0	2	1
			201/202/	& Games/ Creative Arts				
			203/204 / 205	(CA) / Entrepreneurship				
			203	TOTAL (Theory + Labs)				23
				THEORY				
IV.1		PC	EC24251	Analog Circuits	3	1	0	4
IV.2	FOURTH		EC24253	Analog Communication	3	1	0	4
IV.3			EC24255	Computer Architecture	3	0	0	3
IV.4	1		EC24257	VLSI Design	3	1	0	4
IV.5		PE	XX24XXX	Open Elective - I /	3	0	0	3
1 , .5		12	/ MO24201	MOOC - I	3	Ů	Ü	
IV.6			HS24211	Indian Knowledge System	2	0	0	0
	1		<u>I</u>	LABORATORIES				
IV.8	1	PC	EC24252	Analog Circuits Lab	0	0	2	1
IV.9		PC	EC24258	VLSI Design Lab	0	0	2	1
IV.11		MC	MC24 206/ 207/208 / 209/ 210	Choice of: NCC/NSS/ PT & Games/ Creative Arts (CA) / Entrepreneurship	0	0	2	1
TOTAL (Theory + Labs)								21
				TAL FOR SECOND YEAR				44
	Vocational C	ourse H		de. Course Name	1	0	4	3
				de. Course Name	1	0	4	3
	v ocational C	our se I	v. Course Co	uc. Course Ivallic	1	U	7	3

				THEORY				
V.1	FIFTH	PC	EC24301	Electromagnetic Fields and Waves	3	1	0	4
V.2		PC	EC24303	Digital Communication	3	0	0	3
V.3		PC	EC24305	Microprocessors	3	0	0	3
V.4		PC	EC24307	Data Communication and Computer Networking	3	1	0	4
V.5		PE	EC24XXX	Program Elective-I (PE-I)	3	0	0	3
		OE	XX24XXX	Open Elective - II /	3	0	0	3
			/MO24301	MOOC - II				
37.7		D.C.	EG24204	LABORATORIES	0	0	2	1
V.7		PC	EC24304	Communication System Lab	0	0	2	1
V.8		PC	EC24306	Microprocessors Lab	0	0	2	1
V.9		PC	EC24300	Project - I				2
			TOT	AL (Theory + Labs)				24
				THEORY				
VI.1	CIVTH	PC	EC24351	Digital Signal Processing	3	1	0	4
VI.2	SIXTH	PC	EC24353	Control Systems	3	1	0	4
VI.3		PC	EC24355	Embedded Systems	3	0	0	3
VI.4		PE	EC24XXX	Program Elective-II (PE-II)	3	0	0	3
VI.5		OE	XX24XXX / MO24303	Open Elective - III / MOOC - III	3	0	0	3
		HSS	MT24204	Constitution of India	2	0	0	0
			•	LABORATORIES				
VI.6		PC	EC24352	Digital Signal Processing Lab	0	0	2	1
VI.7		PC	EC24356	Embedded Systems Lab	0	0	2	1
		PE	EC243XX X	Program Elective-II Lab	0	0	2	1
		PC	EC24350	Project - II				2
VI.8		HSS	HS24133	Communication Skill - II	0	0	3	1.5
			TOT	AL (Theory + Labs)				23.5
			GRAND TO	OTAL FOR THIRD YEAR				47.5
				THEORY				
VII.1	SEVENT	PC	EC24401	Microwave Theory and Techniques	3	1	0	4
VII.2	Н	PE	EC24XXX	Program Elective-III (PE-III)	3	0	0	3
VII.3		PE	EC24XXX	Program Elective-IV (PE-IV)	3	0	0	3
		PE	EC24XXX	Program Elective-V (PE-V)	3	0	0	3
		OE	/ MO24401	Open Elective - IV / MOOC - IV	3	0	0	3
				LABORATORIES				
VII.6		PC	EC24402	Microwave Lab	0	0	2	1
VII.7		MC	MC24400	Summer Training (Minimum Four Weeks / 160 Hrs)				4
VII.8		PC	EC24400	Project - III				3
				AL (Theory + Labs)				24
			101	AL (Theory Laus)				44


VIII.1	EIGHTH	PC	EC24450/ EC24490	Project-IV / Industry Internship			6
VIII.2			EC24498	Comprehensive Viva			2
TOTAL (Theory + Labs)							8
GRAND TOTAL FOR FOURTH YEAR							32
GRAND TOTAL FOR B.TECH.						168	



BLOOM'S TAXONOMY FOR CURRICULUM DESIGN AND ASSESSMENT:

Preamble

The design of curriculum and assessment is based on Bloom's Taxonomy. A comprehensive guideline for using Bloom's Taxonomy is given below for reference.

Bloom's Taxonomy is used to formulate questions. It facilitates the formulation of action verbs in connection with the various tiers of thinking to achieve a balance between basic retrieval and more complex abilities. Questions at the Remember level, e.g., may use verbs to define or list, questions at the Understand level may use verbs to explain or summarize, at the Apply level use or demonstrate, at the Analyze level differentiate or compare, at the Evaluate level justify or critique, and then at the Create level design or formulate.

COURSE INFORMATION SHEET

Course Code: CH24101 Course Title:Chemistry

Pre-requisite(s): Intermediate level Chemistry

Co- requisite(s):XXXXXXXXX Credits: 4 L: 3 T: 1 P: 0

Class schedule per week: 4

Class: B.Tech.
Semester / Level: I
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To create concept of chemical bonding in coordination chemistry					
2.	To understand the basics of stereochemistry, aromaticity and reaction mechanism of					
	organic molecules					
3.	To understand the reaction dynamics and to know different types of catalysis					
4.	To apprehend the basic principles and the application of vibrational, electronic and					
	NMR spectroscopy					
5.	To develop knowledge on the physical state and electrochemistry of molecules					

COURSE OUTCOMES (COs) (3 COs to 6 COs depending upon the course)

After the completion of this course, students will be able to:

CO1	Able to explain the bonding in a coordination complex					
CO ₂	Able to explain the 3D structure, aromaticity and stereochemistry of organic molecules					
CO ₃	Able to predict the rate, molecularity and mechanism of a simple as well as catalytic					
	reaction					
CO4	Able to explain the UV-vis, IR and NMR spectra of unknown molecules					
CO5	Able to interpret the phase diagram of simple one and two component heterogeneous					
	systems in equilibrium and the electrochemical behavior of the molecules					

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Bonding in Coordination Complex Introduction to Chemical Bonding, Werner's Theory, Bonding in coordination complexes, Crystal Field Theory, Octahedral, Tetrahedral and Square planar complexes, CFSE, Jahn Teller theorem, Spectral, electronic and magnetic properties of coordination complexes.	8
Module – II: Organic Structure and Reactivity Aromaticity, Geometrical isomerism: cis–trans, E/Z, and syn-anti isomerism; Optical isomerism & Chirality; Wedge, Fischer, Newmann and Sawhorse projection formulae and interconversions; D/L, R/S nomenclature system; Conformational studies of n-butane. Addition, Elimination, Substitution and Rearrangement reaction.	8
Module – III: Kinetics and Catalysis Kinetics of Chain, Parallel/Competing/Side, Consecutive reactions; Fast reactions; Outline of Catalysis, Acid-base catalysis, Enzyme catalysis (Michaelis-Menten equation), Important catalysts in industrial processes: Hydrogenation using Wilkinsons catalyst, Phase transfer catalyst.	8
Module – IV: Spectroscopic Techniques Absorption Spectroscopy, Lambert-Beers law, Principles and applications of UV-Visible spectroscopy, Principles and applications of Vibrational spectroscopy; Introduction of NMR spectroscopy.	8
Module – V: Phase and Chemical equilibrium Phase rule: terms involved, Phase diagram of one component (Water) & Department (Pb/Ag) system & their applications; Gibbs Free energy, Van't Hoff equation and Chemical Equilibrium; Nernst Equation, Standard electrode potential, EMF measurement and its application, Batteries and Fuel Cells.	8

TEXTBOOKS:

- 1. Huheey, J. E., Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition, Pearson.
- 2. Morrison, R. N. & Doyd, R. N. Organic Chemistry, Seventh Edition, Pearson
- 3. Atkins, P. W. & Drysical Chemistry, 10th Ed., Oxford University Press, 2014.

REFERENCE BOOKS:

- 1. Lee, J. D. Concise Inorganic Chemistry ELBS, 1991.
- 2. Mortimer, R. G. Physical Chemistry 3rd Ed., Elsevier (2009).
- 3. William Kemp, Organic Spectroscopy, 3 rd Ed., 2008 Macmillan.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

Limited exposure to computational tools, industrial case studies, and skill-based training needed for industry readiness.

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution		
Mid Sem Examination	50		
Quiz and assignment	40		
Teacher's assessment	10		

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Seminars
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	РО	РО	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	1	1	0	0	0	0	1	0	2			
CO2	3	3	2	1	0	0	0	0	1	0	2			
CO3	3	3	3	2	1	1	0	0	1	0	3			
CO4	3	2	1	3	3	0	0	0	2	0	2			
CO5	3	3	2	2	1	2	0	0	1	0	3			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3

CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – Strong Foundation

Develop a solid base in chemistry, mathematics, and engineering fundamentals, enabling the understanding and solution of scientific and engineering problems effectively.

PEO2 - Problem Solving & Research

Enhance analytical and research skills through laboratory experiments such as titrations, kinetics, spectroscopy, and synthesis to arrive at innovative and sustainable solutions.

PEO3 – Professional Ethics

Practice safe laboratory methods, handle chemicals responsibly, and use modern tools and techniques ethically while considering sustainability and environmental protection.

PEO4 – Communication & Teamwork

Work both independently and collaboratively in teams, prepare clear reports, analyze data, and communicate results effectively in written and oral forms.

PEO5 - Lifelong Learning

Recognize the importance of continuous learning, adapt to new chemical technologies, and apply critical thinking to address emerging challenges in research, industry, and society.

PROGRAMME OUTCOMES (POs)

Chemistry Laboratory Experiments Mapped to Program Outcomes (POs)

PO1 - Engineering Knowledge

Apply knowledge of chemistry, mathematics, natural sciences, computing, and engineering fundamentals to solve analytical and experimental problems in gravimetric analysis, titrations, kinetics, spectroscopy, and synthesis.

PO2 – Problem Analysis

Identify, formulate, and analyze chemical and environmental problems such as water hardness, acid strength, kinetics of hydrolysis, and eutectic behavior using systematic experimental approaches.

PO3 – Design/Development of Solutions

Design and develop experimental methodologies for chemical synthesis (e.g., diazoamino benzene), separation of organic mixtures, and solution preparation, considering safety, sustainability, and efficiency.

PO4 – Conduct Investigations of Complex Problems

Plan and conduct investigations through gravimetric estimation, potentiometric/pH-metric

titrations, kinetics, and spectroscopic analysis; interpret experimental data to provide valid conclusions.

PO5 – Engineering Tool Usage

Utilize modern chemical instruments such as spectrophotometers, potentiometers, pH meters, FTIR, and NMR for analysis, while recognizing their scope and limitations.

PO6 – The Engineer and The World

Analyze the societal and environmental aspects of chemical problems, such as water quality (hardness), solvent use in organic separation, and safe disposal of chemical wastes, for sustainable practices.

PO7 – Ethics

Apply ethical principles in chemical experimentation, ensuring accurate reporting of data, responsible handling of reagents, safety compliance, and respect for human and environmental values.

PO8 - Individual and Team Work

Perform experiments independently and collaboratively in groups, developing teamwork and leadership skills in the laboratory setting.

PO9 - Communication

Document experimental procedures, record observations, prepare accurate lab reports, construct graphs, and present results effectively with clarity and scientific rigor.

PO10 – Project Management and Finance

Apply principles of resource management, time management, and cost-effectiveness in synthesis, separation, and quantitative estimations during laboratory experiments.

PO11 – Life-long Learning

Recognize the importance of continuous learning in chemistry by adapting to emerging tools, techniques, and technologies (e.g., advanced spectroscopy, green chemistry), and developing critical thinking for future research challenges.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1.
- 2.
- 3

Mapping of Pos and PSOs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	2	1	1	2
PO2	2	3	1	1	2
PO3	2	2	3	1	1
PO4	2	3	2	1	2
PO5	2	2	2	1	2
PO6	1	2	2	1	2
PO6	1	1	3	1	1
PO7	1	1	1	3	1
PO8	1	1	1	3	1
PO9	1	1	2	2	1
PO10	1	2	1	1	3
PO11	3	2	1	1	2
PSO1					
PSO2					
PSO3					

Grading: No correlation -0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

COURSE INFORMATION SHEET

Course Code: CH24102

Course Title: Chemistry Lab

Pre-requisite(s): Intermediate level Chemistry

Co- requisite(s):

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech. Semester / Level: I Branch: All Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To gain an understanding of the synthesis of organic and inorganic compounds.	
2.	To interpret and analyze spectroscopic data effectively.	
3.	To develop a strong concept of potentiometric and pH-metric titrations of acids and	
	bases.	
4.	To understand and calculate the rate constant of chemical reactions.	
5.	To acquire knowledge of determining melting points and estimating eutectic and	
	transition temperatures.	

COURSE OUTCOMES (COs)

After the completion of this course, students will be able to:

CO ₁	Able to perform the synthesis of organic and inorganic compounds.
CO2	Able to interpret and analyze spectroscopic data.
CO3	Able to carry out potentiometric and pH-metric titrations of acids and bases.
CO4	Able to determine the rate constant of chemical reactions.
CO5	Able to measure melting points and estimate eutectic and transition temperatures.

SYLLABUS (List of experiments)

- 1. Gravimetric estimation of Nickel using Dimethylglyoxime.
- 2. Determination of total Hardness of a given water Sample (Complexometric Titration).
- 3. Verification of Beer's Law using Fe³⁺ solution by spectrophotometer/colorimeter, and determination of the concentration of an unknown Fe³⁺ solution.
- 4. Preparation of Diazoamino Benzene and reporting of its melting point and yield.
- 5. Construction of a melting point—mass percent composition diagram for a two-component mixture and determination of its eutectic temperature.
- 6. Study of the kinetics of acid-catalyzed hydrolysis of ethyl acetate and evaluation of the rate constant.
- 7. Determination of the strength of a strong acid using potentiometric titration with a strong base.
- 8. Determination of the transition temperature of a given salt hydrate.
- 9. Separation of binary organic mixture by acid-base extraction and analysis using given FTIR and NMR spectrum.
- 10. Construction of a pH-titration curve for a strong acid versus a strong base

REFERENCE MATERIALS:

- 1. https://bitmesra.ac.in/edudepartment/content/1/140/553 (link of Lab Manual)
- 2. **Experimental Physical Chemistry** B. Viswanathan, P. S. Raghavan, Narosa Publishing House (1997).
- 3. Vogel's Textbook of Practical Organic Chemistry
- 4. Experiments in General Chemistry C. N. R. Rao, U. C. Agarwal.
- 5. **Experimental Organic Chemistry, Vol. 1 & 2** P. R. Singh, D. S. Gupta, K. S. Bajpai, Tata McGraw-Hill

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

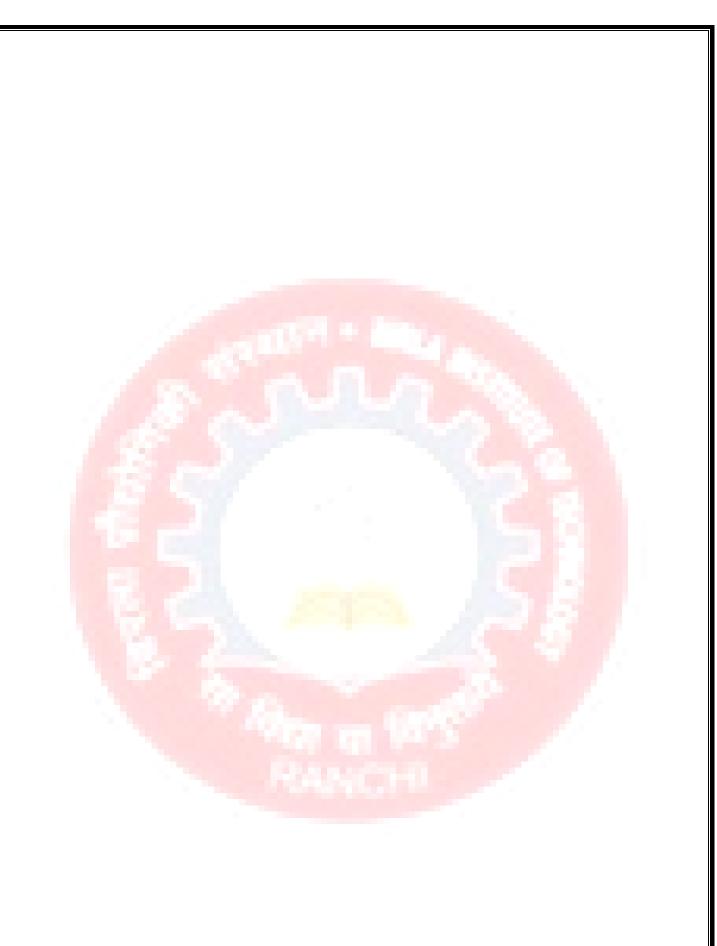
Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback onCourse Outcome

COURSE DELIVERY METHODS

CD1	Introductory lecture by use of boards/LCD projectors
CD2	Laboratory experiments/ teaching aid
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Seminars (discussion of experimental results and error analysis).
CD5	Group discussions/problem-solving sessions (to analyze experimental
	data and calculations).
CD6	Industrial/guest lectures (applications of chemical analysis techniques in
	industry).
CD7	Industrial visits (exposure to real chemical laboratories and processes).


MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	3	2	2	2	3	1	1	2	2			
CO2	3	2	2	3	3	2	1	1	3	2	3			
CO3	3	3	1	3	3	1	2	1	2	2	2			
CO4	3	3	1	3	2	1	1	1	1	2	3			
CO5	3	2	1	2	2	2	1	1	1	1	3			

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

